Paired Mass Distance(PMD) analysis for GC/LC-MS based non-targeted analysis

Introduction of Paired Mass Distance analysis

pmd package use Paired Mass Distance (PMD) relationship to analysis the GC/LC-MS based non-targeted data. PMD means the distance between two masses or mass to charge ratios. In mass spectrometry, PMD would keep the same value between two masses and two mass to charge ratios(m/z). There are two kinds of PMD involved in this package: PMD from the same compound and PMD from different compounds. In GC/LC-MS or XCMS based non-targeted data analysis, peaks could be separated by chronograph and same compound means ions from similar retention times or ions co-eluted by certain column.

PMD from the same compound

For MS1 full scan data, we could build retention time(RT) bins to assign peaks into different RT groups by retention time hierarchical clustering analysis. For each RT group, the peaks should come from same compounds or co-elutes. If certain PMD appeared in multiple RT groups, it would be related to the relationship about adducts, neutral loss, isotopologues or common fragments ions.

PMD from different compounds

The peaks from different retention time groups would like to be different compounds separated by chronograph. The PMD would reflect the relationship about homologous series or chemical reactions.

GlobalStd algorithm use the PMD within same RT group to find independent peaks among certain data set. Then, structure/reaction directed analysis use PMD from different RT groups to screen important compounds or reactions.

Data format

The input data should be a list object with at least two elements from a peaks list:

  • mass to charge ratio with name of mz, high resolution mass spectrometry is required
  • retention time with name of rt

However, I suggested to add intensity and group information to the list for validation of PMD analysis.

In this package, a data set from in vivo solid phase micro-extraction(SPME) was attached. This data set contain 9 samples from 3 fish with triplicates samples for each fish. Here is the data structure:

library(pmd)
data("spmeinvivo")
str(spmeinvivo)
#> List of 4
#>  $ data : num [1:1459, 1:9] 1095 10439 10154 2797 90211 ...
#>   ..- attr(*, "dimnames")=List of 2
#>   .. ..$ : chr [1:1459] "100.1/170" "100.5/86" "101/85" "103.1/348" ...
#>   .. ..$ : chr [1:9] "1405_Fish1_F1" "1405_Fish1_F2" "1405_Fish1_F3" "1405_Fish2_F1" ...
#>  $ group:'data.frame':   9 obs. of  2 variables:
#>   ..$ sample_name : chr [1:9] "1405_Fish1_F1" "1405_Fish1_F2" "1405_Fish1_F3" "1405_Fish2_F1" ...
#>   ..$ sample_group: chr [1:9] "fish1" "fish1" "fish1" "fish2" ...
#>  $ mz   : num [1:1459] 100 101 101 103 104 ...
#>  $ rt   : num [1:1459] 170.2 86.3 84.9 348.1 48.8 ...

You could build this list or mzrt object from the xcms objects via enviGCMS package. When you have a xcmsSet object or XCMSnExp object named xset, you could use enviGCMS::getmzrt(xset) to get such list. Of course you could build such list by yourself.

GlobalStd algorithm

GlobalStd algorithm try to find independent peaks among certain peaks list. The first step is retention time hierarchical clustering analysis. The second step is to find the relationship among adducts, neutral loss, isotopologues and common fragments ions. The third step is to screen the independent peaks.

Here is a workflow for this algorithm:

knitr::include_graphics('https://yufree.github.io/presentation/figure/GlobalStd.png')

STEP1: Retention time hierarchical clustering

pmd <- getpaired(spmeinvivo)
#> 75 retention time cluster found.
#> 369 paired masses found
#> 5 unique within RT clusters high frequency PMD(s) used for further investigation.
#> The unique within RT clusters high frequency PMD(s) is(are)  28.03 21.98 44.03 17.03 18.01.
#> 719 isotopologue(s) related paired mass found.
#> 492 multi-charger(s) related paired mass found.
plotrtg(pmd)

This plot would show the distribution of RT groups. The rtcutoff in function getpaired could be used to set the cutoff of the distances in retention time hierarchical clustering analysis. Retention time cluster cutoff should fit the peak picking algorithm. For HPLC, 10 is suggested and 5 could be used for UPLC.

Global PMD’s retention time group numbers should be around 20 percent of the retention time cluster numbers. For example, if you find 100 retention time clusters, I suggested you use 20 as the cutoff of empirical global PMD’s retention time group numbers. If you don’t specifically assign a value to ng, the algorithm will select such recommendation by default setting.

Take care of the retention time cluster with lots of peaks. In this case, such cluster could be co-eluted compounds on certain column. It would be wise to trim the retention time window for high quality peaks. Another important hint is that pre-filter your peak list by black samples or other quality control samples. Otherwise the running time would be long and lots of pmd relationship would be just from noise.

STEP2: Relationship among adducts, neutral loss, isotopologues and common fragments ions

The ng in function getpaired could be used to set cutoff of global PMD’s retention time group numbers. If ng is 10, at least 10 of the retention time groups should contain the shown PMD relationship. You could use plotpaired to show the distribution.

plotpaired(pmd)

You could also show the distribution of PMD relationship by index:

# show the unique PMD found by getpaired function
for(i in 1:length(unique(pmd$paired$diff2))){
        diff <- unique(pmd$paired$diff2)[i]
        index <- pmd$paired$diff2 == diff
        plotpaired(pmd,index)
}

This is an easy way to find potential adducts of the data by high frequency PMD from the same compound. For example, 21.98 Da could be the mass distances between [M + H]+ and [M + Na]+. In this case, user could find the potential adducts or neutral loss even when they have no preferred adducts list. If one adduct exist in certain analytical system, the high frequency PMD will reveal such relationship. The high frequency PMD list could also be used to check the fragmental pattern of in-source reactions as long as such patterns are popular among all collected ions.

STEP3: Screen the independent peaks

You could use getstd function to get the independent peaks. Independent peaks mean the peaks list removing the redundant peaks such as adducts, neutral loss, isotopologues and comment fragments ions found by PMD analysis in STEP2. Ideally, those peaks could be molecular ions while they might still contain redundant peaks.

std <- getstd(pmd)
#> 8 retention group(s) have single peaks. 14 23 32 33 54 55 56 75
#> 11 group(s) with multiple peaks while no isotope/paired relationship 4 5 7 8 11 41 42 49 68 72 73
#> 9 group(s) with multiple peaks with isotope without paired relationship 2 9 22 26 52 62 64 66 70
#> 4 group(s) with paired relationship without isotope 1 10 15 18
#> 43 group(s) with paired relationship and isotope 3 6 12 13 16 17 19 20 21 24 25 27 28 29 30 31 34 35 36 37 38 39 40 43 44 45 46 47 48 50 51 53 57 58 59 60 61 63 65 67 69 71 74
#> 291 std mass found.

Here you could plot the peaks by plotstd function to show the distribution of independent peaks:

plotstd(std)

You could also plot the peaks distribution by assign a retention time group via plotstdrt:

par(mfrow = c(2,3))
plotstdrt(std,rtcluster = 23,main = 'Retention time group 23')
plotstdrt(std,rtcluster = 9,main = 'Retention time group 9')
plotstdrt(std,rtcluster = 18,main = 'Retention time group 18')
plotstdrt(std,rtcluster = 67,main = 'Retention time group 67')
plotstdrt(std,rtcluster = 49,main = 'Retention time group 49')
plotstdrt(std,rtcluster = 6,main = 'Retention time group 6')

Extra filter with correlation coefficient cutoff

Original GlobalStd algorithm only use mass to charge ratio and retention time of peaks to select independent peaks. However, if intensity data across samples are available, correlation coefficient of paired ions could be used to further filter the random noise in high frequency PMDs. You could set up cutoff of Pearson Correlation Coefficient between peaks to refine the peaks selected by GlobalStd within same retention time groups. In this case, the numbers of selected independent peaks will be further reduced. When you use this parameter, make sure the intensity data are from real samples instead of blank samples, which will affect the calculation of correlation coefficient.

std2 <- getstd(pmd,corcutoff = 0.9)
#> 8 retention group(s) have single peaks. 14 23 32 33 54 55 56 75
#> 23 group(s) with multiple peaks while no isotope/paired relationship 2 4 5 7 8 10 11 15 18 26 35 39 41 42 49 50 59 62 68 69 70 72 73
#> 14 group(s) with multiple peaks with isotope without paired relationship 9 12 22 24 27 28 34 51 52 57 60 64 66 71
#> 3 group(s) with paired relationship without isotope 1 53 74
#> 27 group(s) with paired relationship and isotope 3 6 13 16 17 19 20 21 25 29 30 31 36 37 38 40 43 44 45 46 47 48 58 61 63 65 67
#> 120 std mass found.

Validation by principal components analysis(PCA)

You need to check the GlobalStd algorithm’s results by principal components analysis(PCA). If we removed too much peaks containing information, the score plot of reduced data set would show great changes.

library(enviGCMS)
par(mfrow = c(2,2),mar = c(4,4,2,1)+0.1)
plotpca(std$data,lv = as.numeric(as.factor(std$group$sample_group)),main = "all peaks")
plotpca(std$data[std$stdmassindex,],lv = as.numeric(as.factor(std$group$sample_group)),main = paste(sum(std$stdmassindex),"independent peaks"))
plotpca(std2$data[std2$stdmassindex,],lv = as.numeric(as.factor(std$group$sample_group)),main = paste(sum(std2$stdmassindex),"reduced independent peaks"))

You might find original GlobalStd algorithm show a similar PCA score plot with original data while GlobalStd algorithm considering intensity data seems change the profile. The major reason is that correlation coefficient option in the algorithm will remove the paired ions without strong correlation. It will be aggressive to remove low intensity peaks, which are vulnerable by baseline noise. However, such options would be helpful if you only concern high quality peaks for following analysis. Otherwise, original GlobalStd will keep the most information for explorer purpose.

Comparison with other pseudo spectra extraction method

GlobalStd algorithm in pmd package could be treated as a method to extract pseudo spectra. You could use getcluster to get peaks groups information for all GlobalStd peaks. This function would consider the merge of GlobalStd peaks when certain peak is involved in multiple clusters. Then you could choose export peaks with the highest intensities or base peaks in each GlobalStd merged peaks groups. Meanwhile, you could also include the correlation coefficient cutoff to further improve the data quality.

stdcluster <- getcluster(std)
# extract pseudospectra for std peak 71
idx <- unique(stdcluster$cluster$largei[stdcluster$cluster$i==71])
plot(stdcluster$cluster$mz[stdcluster$cluster$largei==idx],stdcluster$cluster$ins[stdcluster$cluster$largei==idx],type = 'h',xlab = 'm/z',ylab = 'intensity',main = 'pseudo spectra for GlobalStd peak 71')

# export peaks with the highest intensities in each GlobalStd peaks groups.
data <- stdcluster$data[stdcluster$stdmassindex2,]
# considering the correlation coefficient cutoff
stdcluster2 <- getcluster(std, corcutoff = 0.9)
# considering the correlation coefficient cutoff for both psedospectra extraction and GlobalStd algorithm
stdcluster3 <- getcluster(std2, corcutoff = 0.9)

We supplied getcorcluster to find peaks groups by correlation analysis only. The base peaks of correlation cluster were selected to stand for the compounds.

corcluster <- getcorcluster(spmeinvivo)
#> 75 retention time cluster found.
# extract pseudospectra 1@46
peak <- corcluster$cluster[corcluster$cluster$largei == '1@46',]
plot(peak$ins~peak$mz,type = 'h',xlab = 'm/z',ylab = 'intensity',main = 'pseudo spectra for correlation cluster')

Then we could compare the compare reduced result using PCA similarity factor. A good peak selection algorithm could show a high PCA similarity factor compared with original data set while retain the minimized number of peaks.

par(mfrow = c(3,3),mar = c(4,4,2,1)+0.1)
plotpca(std$data[std$stdmassindex,],lv = as.numeric(as.factor(std$group$sample_group)),main = paste(sum(std$stdmassindex),"independent peaks"))
plotpca(std$data[stdcluster$stdmassindex2,],lv = as.numeric(as.factor(std$group$sample_group)),main = paste(sum(stdcluster$stdmassindex2),"independent base peaks"))
plotpca(std$data[stdcluster2$stdmassindex2,],lv = as.numeric(as.factor(std$group$sample_group)),main = paste(sum(stdcluster2$stdmassindex2),"independent reduced base peaks"))
plotpca(std$data[corcluster$stdmassindex,],lv = as.numeric(as.factor(std$group$sample_group)),main = paste(sum(corcluster$stdmassindex),"peaks without correlationship"))
plotpca(std$data[corcluster$stdmassindex2,],lv = as.numeric(as.factor(std$group$sample_group)),main = paste(sum(corcluster$stdmassindex2),"base peaks without correlationship"))
plotpca(std$data,lv = as.numeric(as.factor(std$group$sample_group)),main = paste(nrow(std$data),"all peaks"))
plotpca(std$data[stdcluster3$stdmassindex2,],lv = as.numeric(as.factor(std$group$sample_group)),main = paste(sum(stdcluster3$stdmassindex2),"reduced independent base peaks"))
pcasf(std$data, std$data[std$stdmassindex,])
#>     pcasf 
#> 0.9993497
pcasf(std$data, std$data[stdcluster$stdmassindex2,])
#>     pcasf 
#> 0.9993578
pcasf(std$data, std$data[stdcluster2$stdmassindex2,])
#>    pcasf 
#> 0.999346
pcasf(std$data, std$data[corcluster$stdmassindex,])
#>     pcasf 
#> 0.9471586
pcasf(std$data, std$data[corcluster$stdmassindex2,])
#>     pcasf 
#> 0.9497193
pcasf(std$data, std$data[stdcluster3$stdmassindex2,])
#>    pcasf 
#> 0.713527

In this case, five peaks selection algorithms are fine to stand for the original peaks with PCA similarity score larger than 0.9. However, the independent base peaks retain the most information with relative low numbers of peaks.

Structure/Reaction directed analysis

getsda function could be used to perform Structure/reaction directed analysis. The cutoff of frequency is automate found by PMD network analysis with the largest mean distance of all nodes.

sda <- getsda(std)
#> PMD frequency cutoff is 6 by PMD network analysis with largest network average distance 6.67 .
#> 53 groups were found as high frequency PMD group.
#> 0 was found as high frequency PMD. 
#> 1.98 was found as high frequency PMD. 
#> 2.01 was found as high frequency PMD. 
#> 2.02 was found as high frequency PMD. 
#> 6.97 was found as high frequency PMD. 
#> 11.96 was found as high frequency PMD. 
#> 12 was found as high frequency PMD. 
#> 13.98 was found as high frequency PMD. 
#> 14.02 was found as high frequency PMD. 
#> 14.05 was found as high frequency PMD. 
#> 15.99 was found as high frequency PMD. 
#> 16.03 was found as high frequency PMD. 
#> 19.04 was found as high frequency PMD. 
#> 28.03 was found as high frequency PMD. 
#> 30.05 was found as high frequency PMD. 
#> 31.99 was found as high frequency PMD. 
#> 33.02 was found as high frequency PMD. 
#> 37.02 was found as high frequency PMD. 
#> 42.05 was found as high frequency PMD. 
#> 48.04 was found as high frequency PMD. 
#> 48.98 was found as high frequency PMD. 
#> 49.02 was found as high frequency PMD. 
#> 54.05 was found as high frequency PMD. 
#> 56.06 was found as high frequency PMD. 
#> 56.1 was found as high frequency PMD. 
#> 58.04 was found as high frequency PMD. 
#> 58.08 was found as high frequency PMD. 
#> 58.11 was found as high frequency PMD. 
#> 63.96 was found as high frequency PMD. 
#> 66.05 was found as high frequency PMD. 
#> 68.06 was found as high frequency PMD. 
#> 70.04 was found as high frequency PMD. 
#> 70.08 was found as high frequency PMD. 
#> 74.02 was found as high frequency PMD. 
#> 80.03 was found as high frequency PMD. 
#> 82.08 was found as high frequency PMD. 
#> 88.05 was found as high frequency PMD. 
#> 91.1 was found as high frequency PMD. 
#> 93.12 was found as high frequency PMD. 
#> 94.1 was found as high frequency PMD. 
#> 96.09 was found as high frequency PMD. 
#> 101.05 was found as high frequency PMD. 
#> 108.13 was found as high frequency PMD. 
#> 110.11 was found as high frequency PMD. 
#> 112.16 was found as high frequency PMD. 
#> 116.08 was found as high frequency PMD. 
#> 122.15 was found as high frequency PMD. 
#> 124.16 was found as high frequency PMD. 
#> 126.14 was found as high frequency PMD. 
#> 144.18 was found as high frequency PMD. 
#> 148.04 was found as high frequency PMD. 
#> 150.2 was found as high frequency PMD. 
#> 173.18 was found as high frequency PMD.

Such largest mean distance of all nodes is calculated for top 1 to 100 (if possible) high frequency PMDs. Here is a demo for the network generation process.

library(igraph)
#> 
#> Attaching package: 'igraph'
#> The following objects are masked from 'package:stats':
#> 
#>     decompose, spectrum
#> The following object is masked from 'package:base':
#> 
#>     union
cdf <- sda$sda
# get the PMDs and frequency
pmds <- as.numeric(names(sort(table(cdf$diff2),decreasing = T)))
freq <- sort(table(cdf$diff2),decreasing = T)
# filter the frequency larger than 10 for demo
pmds <- pmds[freq>10]
cdf <- sda$sda[sda$sda$diff2 %in% pmds,]
g <- igraph::graph_from_data_frame(cdf,directed = F)
l <- igraph::layout_with_fr(g)
for(i in 1:length(pmds)){
  g2 <- igraph::delete_edges(g,which(E(g)$diff2%in%pmds[1:i]))
  plot(g2,edge.width=1,vertex.label="",vertex.size=1,layout=l,main=paste('Top',length(pmds)-i,'high frequency PMDs'))
}

Here we could find more and more compounds will be connected with more high frequency PMDs. Meanwhile, the mean distance of all network nodes will increase. However, some PMDs are generated by random combination of ions. In this case, if we included those PMDs for the network, the mean distance of all network nodes will decrease. Here, the largest mean distance means no more information will be found for certain data set and such value is used as the cutoff for high frequency PMDs selection.

You could use plotstdsda to show the distribution of the selected paired peaks.

plotstdsda(sda)

You could also use index to show the distribution of certain PMDs.

par(mfrow = c(1,3),mar = c(4,4,2,1)+0.1)
plotstdsda(sda,sda$sda$diff2 == 2.02)
plotstdsda(sda,sda$sda$diff2 == 28.03)
plotstdsda(sda,sda$sda$diff2 == 58.04)

Structure/reaction directed analysis could be directly performed on all the peaks, which is slow to process:

sdaall <- getsda(spmeinvivo)
#> PMD frequency cutoff is 104 by PMD network analysis with largest network average distance 14.06 .
#> 6 groups were found as high frequency PMD group.
#> 0 was found as high frequency PMD. 
#> 2.02 was found as high frequency PMD. 
#> 28.03 was found as high frequency PMD. 
#> 31.01 was found as high frequency PMD. 
#> 58.04 was found as high frequency PMD. 
#> 116.08 was found as high frequency PMD.
par(mfrow = c(1,3),mar = c(4,4,2,1)+0.1)
plotstdsda(sdaall,sdaall$sda$diff2 == 2.02)
plotstdsda(sdaall,sdaall$sda$diff2 == 28.03)
plotstdsda(sdaall,sdaall$sda$diff2 == 58.04)

Extra filter with correlation coefficient cutoff

Structure/Reaction directed analysis could also use correlation to restrict the paired ions. However, similar to GlobalStd algorithm, such cutoff will remove low intensity data. Researcher should have a clear idea to use this cutoff.

sda2 <- getsda(std, corcutoff = 0.9)
#> PMD frequency cutoff is 6 by PMD network analysis with largest network average distance 6.67 .
#> 41 groups were found as high frequency PMD group.
#> 0 was found as high frequency PMD. 
#> 1.98 was found as high frequency PMD. 
#> 2.01 was found as high frequency PMD. 
#> 2.02 was found as high frequency PMD. 
#> 11.96 was found as high frequency PMD. 
#> 12 was found as high frequency PMD. 
#> 13.98 was found as high frequency PMD. 
#> 14.02 was found as high frequency PMD. 
#> 14.05 was found as high frequency PMD. 
#> 15.99 was found as high frequency PMD. 
#> 16.03 was found as high frequency PMD. 
#> 19.04 was found as high frequency PMD. 
#> 28.03 was found as high frequency PMD. 
#> 30.05 was found as high frequency PMD. 
#> 31.99 was found as high frequency PMD. 
#> 33.02 was found as high frequency PMD. 
#> 42.05 was found as high frequency PMD. 
#> 48.98 was found as high frequency PMD. 
#> 49.02 was found as high frequency PMD. 
#> 54.05 was found as high frequency PMD. 
#> 56.06 was found as high frequency PMD. 
#> 58.04 was found as high frequency PMD. 
#> 58.08 was found as high frequency PMD. 
#> 63.96 was found as high frequency PMD. 
#> 66.05 was found as high frequency PMD. 
#> 68.06 was found as high frequency PMD. 
#> 70.08 was found as high frequency PMD. 
#> 74.02 was found as high frequency PMD. 
#> 80.03 was found as high frequency PMD. 
#> 82.08 was found as high frequency PMD. 
#> 88.05 was found as high frequency PMD. 
#> 93.12 was found as high frequency PMD. 
#> 94.1 was found as high frequency PMD. 
#> 96.09 was found as high frequency PMD. 
#> 108.13 was found as high frequency PMD. 
#> 110.11 was found as high frequency PMD. 
#> 112.16 was found as high frequency PMD. 
#> 116.08 was found as high frequency PMD. 
#> 122.15 was found as high frequency PMD. 
#> 124.16 was found as high frequency PMD. 
#> 126.14 was found as high frequency PMD.
plotstdsda(sda2)

Structure/reaction directed analysis for peaks/compounds only data

When you only have data of peaks without retention time or compounds list, structure/reaction directed analysis could also be done by getrda function.

sda <- getrda(spmeinvivo$mz)
#> 164462 pmd found.
#> 20 pmd used.
# check high frequency pmd
colnames(sda)
#>  [1] "0"       "1.001"   "1.002"   "1.003"   "1.004"   "2.015"   "2.016"  
#>  [8] "14.015"  "17.026"  "18.011"  "21.982"  "28.031"  "28.032"  "44.026" 
#> [15] "67.987"  "67.988"  "88.052"  "116.192" "135.974" "135.975"
# get certain pmd related m/z
idx <- sda[,'2.016']
# show the m/z
spmeinvivo$mz[idx]
#>  [1] 118.0651 118.0652 120.0812 159.1575 162.0552 170.0330 170.0932 170.1541
#>  [9] 174.1363 174.9917 175.0873 176.0305 176.0418 181.9872 184.1695 188.6484
#> [17] 192.1487 192.1604 226.9522 226.9523 228.1969 228.1973 259.1148 261.1317
#> [25] 270.3185 271.3217 272.3230 272.3234 273.8902 274.8744 284.2955 285.3002
#> [33] 285.3002 286.3101 286.3101 291.0712 293.1755 294.9392 296.2961 304.3081
#> [41] 305.2480 305.3118 308.0889 308.2953 308.2954 309.1672 309.2046 315.1781
#> [49] 317.9344 319.3005 319.3002 319.9302 320.3041 320.3322 321.3165 322.3185
#> [57] 323.3221 324.3266 325.3294 327.2022 327.3449 329.0052 331.0031 350.3426
#> [65] 352.3214 352.3215 353.3244 354.3365 355.0696 359.2410 361.2353 372.3197
#> [73] 375.3066 383.2804 383.3723 384.3350 385.2753 385.3480 387.2851 397.1907
#> [81] 399.3274 400.9174 401.3420 403.2859 432.8860 433.2781 445.8289 447.1173
#> [89] 451.3633 462.8615 522.3557 524.1178 525.9831 526.4841 705.7223 708.8218
#> [97] 976.3139 976.8122 982.7763

Wrap function for GlobalStd algorithm

globalstd function is a wrap function to process GlobalStd algorithm and structure/reaction directed analysis in one line. All the plot function could be directly used on the list objects from globalstd function. If you want to perform structure/reaction directed analysis, set the sda=T in the globalstd function.

result <- globalstd(spmeinvivo, sda=FALSE)
#> 75 retention time cluster found.
#> 369 paired masses found
#> 5 unique within RT clusters high frequency PMD(s) used for further investigation.
#> The unique within RT clusters high frequency PMD(s) is(are)  28.03 21.98 44.03 17.03 18.01.
#> 719 isotopologue(s) related paired mass found.
#> 492 multi-charger(s) related paired mass found.
#> 8 retention group(s) have single peaks. 14 23 32 33 54 55 56 75
#> 11 group(s) with multiple peaks while no isotope/paired relationship 4 5 7 8 11 41 42 49 68 72 73
#> 9 group(s) with multiple peaks with isotope without paired relationship 2 9 22 26 52 62 64 66 70
#> 4 group(s) with paired relationship without isotope 1 10 15 18
#> 43 group(s) with paired relationship and isotope 3 6 12 13 16 17 19 20 21 24 25 27 28 29 30 31 34 35 36 37 38 39 40 43 44 45 46 47 48 50 51 53 57 58 59 60 61 63 65 67 69 71 74
#> 291 std mass found.

Use independent peaks for MS/MS validation (PMDDA)

Independent peaks are supposing generated from different compounds. We could use those peaks for MS/MS analysis instead of DIA or DDA. Here we need multiple injections for one sample since it might be impossible to get all ions’ fragment ions in one injection with good sensitivity. You could use gettarget to generate the index for the injections and output the peaks for each run.

# you need retention time for independent peaks
index <- gettarget(std$rt[std$stdmassindex])
#> You need 10 injections!
# output the ions for each injection
table(index)
#> index
#>  1  2  3  4  5  6  7  8  9 10 
#> 37 28 42 28 19 50 19 24 20 24
# show the ions for the first injection
std$mz[index==1]
#>   [1] 118.0651 118.0652 118.0873 121.0287 125.9874 131.0854 135.1168 143.9602
#>   [9] 147.1174 155.1300 156.1777 163.1487 169.0976 175.1482 176.0418 190.0124
#>  [17] 193.1415 198.1852 210.1577 212.2025 213.2050 217.1483 223.0652 227.1853
#>  [25] 233.2268 234.0200 235.4382 236.9406 238.2020 244.1300 245.1944 249.1869
#>  [33] 251.0008 251.1650 252.1237 254.2122 258.8998 267.2693 267.9535 268.2639
#>  [41] 269.2687 270.3172 270.3185 270.3185 271.3217 272.3234 277.1418 280.2641
#>  [49] 285.3002 286.9218 300.2046 301.2899 308.0919 309.9372 313.3297 324.3266
#>  [57] 327.0091 327.2022 328.8778 331.2849 336.3260 339.6388 340.2606 340.3481
#>  [65] 341.0180 341.3048 352.3215 353.3603 355.3391 357.0503 357.3157 359.2410
#>  [73] 361.2353 365.3196 375.3066 376.3179 377.3224 378.9015 382.3673 383.1282
#>  [81] 383.3671 392.2873 393.2990 398.2762 401.3420 409.2673 415.2132 424.0815
#>  [89] 425.2153 431.3847 436.3425 444.3844 449.2989 454.2924 456.8437 462.8615
#>  [97] 469.1857 479.2613 494.8112 494.8112 494.8113 494.8114 497.3440 508.3041
#> [105] 514.8764 516.3893 519.1401 520.2968 522.3557 525.9831 533.9698 543.3280
#> [113] 543.4015 545.3435 546.8234 551.3562 554.2887 558.0957 564.3304 565.5679
#> [121] 568.3399 576.8454 584.8611 595.1563 608.4285 610.1834 625.3928 635.3784
#> [129] 642.1942 658.4832 663.4897 664.4627 666.8256 674.5057 677.8593 686.2013
#> [137] 687.6632 690.6403 692.4941 695.1516 704.8667 707.8415 708.8218 709.5932
#> [145] 710.8511 713.4467 716.5241 730.6517 751.6125 752.5158 753.5196 758.2223
#> [153] 760.8210 761.3902 765.8380 774.5655 776.6031 786.5069 790.5883 802.5006
#> [161] 812.8331 832.8212 835.8303 847.8263 859.8318 868.4448 879.3804 883.7184
#> [169] 884.4968 888.6729 896.7943 907.1589 920.4687 920.8140 923.8020 925.4477
#> [177] 929.4891 946.8063 949.8072 952.7628 964.7811 968.7950 974.8148 975.8147
#> [185] 984.7703
std$rt[index==1]
#>   [1]  511.2940  639.2070  165.6830  583.7690 1079.6500  611.4120  639.3135
#>   [8]   85.4930  688.6020  874.8015  405.3890  612.9110  169.7530  453.1780
#>  [15]  212.8690  218.5220  462.1140  612.2700  611.4130  639.1000  594.9115
#>  [22]  638.8870  467.3650  611.1980  639.1000  169.9670  144.0400  147.8960
#>  [29]  170.1770  504.6540  615.0550  645.4960  509.7940  576.2670  591.4830
#>  [36]  451.6785  217.2010  633.3765  146.3950  639.1000  639.1010    4.0610
#>  [43]  572.8400  781.4320  858.8350  742.6450  482.5790  576.6950  670.6010
#>  [50]  146.5170  172.2230  594.9120  175.3150  145.4960  636.9560  628.9860
#>  [57]  509.5330  170.3860  144.2610  586.9820  622.7680  639.0990  340.8480
#>  [64]  638.8870  717.1835  612.2680  551.4120  648.9580  594.4820  717.1015
#>  [71]  639.3150  213.7505  550.5530  656.2235  582.2700  594.6970  594.6960
#>  [78]  215.8460  616.5550  577.9840  699.7440  665.0280  659.6730  492.2220
#>  [85]  672.1020  493.0790  507.8650  583.9830  601.3390  612.4840  664.8160
#>  [92]  582.4815  403.8915  504.0090  217.2465  217.1550  600.2700  557.4110
#>  [99]  817.9060  727.4325  782.9350  870.6220  536.5865  532.7230  215.7020
#> [106]  540.8620  762.3620  639.5820  546.4830  639.0980  639.2075  492.4360
#> [113]  439.2500  511.0800  218.1225  551.4100  512.7940  762.6835  531.3305
#> [120]  735.1450  510.6510  215.1975  215.7865  819.4050  613.3395  818.9790
#> [127]  530.7950  213.5480  818.7645  468.4850  633.5910  527.7950  216.7620
#> [134]  468.4360  214.8145  883.0525  638.8860  594.0550  528.2230  639.3130
#> [141]  213.9270  214.2010  214.8000  619.9850  214.4150  525.0090  481.0790
#> [148]  594.6980  624.2705  522.4370  522.2240  699.9600  215.6320  486.0080
#> [155]  214.2850  492.5440  639.1010  692.8890  492.8650  519.6610  214.4150
#> [162]  213.7130  213.4430  214.7070  213.3840  493.9370  373.7835  632.1990
#> [169]  213.3590  632.3055  215.4870  213.3590  497.7940  213.5930  215.4170
#> [176]  476.5790  213.3110  213.6155  214.6300  654.3150  215.6320  213.9410
#> [183]  213.7130  213.7270  215.0690

Shiny application

An interactive document has been included in this package to perform PMD analysis. You need to prepare a csv file with m/z and retention time of peaks. Such csv file could be generated by run enviGCMS::getcsv() on the list object from enviGCMS::getmzrt(xset) function. The xset should be XCMSnExp object or xcmsSet object. You could also generate the csv file by enviGCMS::getmzrt(xset,name = 'test'). You will find the csv file in the working dictionary named test.csv.

Then you could run runPMD() to start the Graphical user interface(GUI) for GlobalStd algorithm and structure/reaction directed analysis.

Conclusion

pmd package could be used to reduce the redundancy peaks for GC/LC-MS based research and perform structure/reaction directed analysis to screen known and unknown important compounds or reactions.