Package: pmd (via r-universe)

October 27, 2024

Type Package

Title Paired Mass Distance Analysis for GC/LC-MS Based Non-Targeted Analysis and Reactomics Analysis

Version 0.2.6

Description Paired mass distance (PMD) analysis proposed in Yu, Olkowicz and Pawliszyn (2018) <doi:10.1016/j.aca.2018.10.062> and PMD based reactomics analysis proposed in Yu and Petrick (2020) <doi:10.1038/s42004-020-00403-z> for gas/liquid chromatography-mass spectrometry (GC/LC-MS) based non-targeted analysis. PMD analysis including GlobalStd algorithm and structure/reaction directed analysis. GlobalStd algorithm could found independent peaks in m/z-retention time profiles based on retention time hierarchical cluster analysis and frequency analysis of paired mass distances within retention time groups. Structure directed analysis could be used to find potential relationship among those independent peaks in different retention time groups based on frequency of paired mass distances. Reactomics analysis could also be performed to build PMD network, assign sources and make biomarker reaction discovery. GUIs for PMD analysis is also included as 'shiny' applications.

URL https://yufree.github.io/pmd/

BugReports https://github.com/yufree/pmd/issues

License GPL-2 Encoding UTF-8 LazyData true

Suggests knitr, shiny, rmarkdown, MSnbase

VignetteBuilder knitr **Depends** R (>= 3.5.0)

Imports RColorBrewer, stats, graphics, utils, data.table, igraph, enviGCMS

RoxygenNote 7.3.1

2 Contents

Repository https://yufree.r-universe.dev

RemoteUrl https://github.com/yufree/pmd

RemoteRef HEAD

RemoteSha ce3d821ea19eeab14dac15ab9827bd823abd8444

Contents

Index

etcda	. 3
etchain	. 3
etcluster	. 4
etcorcluster	. 5
etms2pmd	. 6
etmspmd	. 6
etpaired	. 7
etpmd	. 8
etpmddf	. 8
etposneg	. 9
etrda	. 10
etreact	. 11
etsda	. 12
etstd	. 13
ettarget	. 14
lobalstd	. 14
mdb	. 16
eggrall	. 16
MaConDa	. 17
mics	. 17
casf	. 18
loten	. 19
lotpaired	. 19
lotrtg	. 20
lotsda	. 21
lotstd	. 21
lotstdrt	. 22
lotstdsda	. 23
mdanno	. 23
unPMD	. 24
unPMDnet	. 24
da	. 25
pmeinvivo	. 25

26

getcda 3

getcda	Perform correlation directed analysis for peaks list.
3	J J I

Description

Perform correlation directed analysis for peaks list.

Usage

```
getcda(list, corcutoff = 0.9, rtcutoff = 10, accuracy = 4)
```

Arguments

list a list with mzrt profile

corcutoff cutoff of the correlation coefficient, default NULL

rtcutoff cutoff of the distances in retention time hierarchical clustering analysis, default

10

accuracy measured mass or mass to charge ratio in digits, default 4

Value

list with correlation directed analysis results

See Also

```
getsda,getrda
```

Examples

```
data(spmeinvivo)
cluster <- getcorcluster(spmeinvivo)
cbp <- enviGCMS::getfilter(cluster,rowindex = cluster$stdmassindex2)
cda <- getcda(cbp)</pre>
```

getchain Get reaction chain for specific mass to charge ratio

Description

Get reaction chain for specific mass to charge ratio

4 getcluster

Usage

```
getchain(
  list,
  diff,
  mass,
  digits = 2,
  accuracy = 4,
  rtcutoff = 10,
  corcutoff = 0.6,
  ppm = 25
)
```

Arguments

list	a list with mzrt profile
diff	paired mass distance(s) of interests
mass	a specific mass for known compound or a vector of masses. You could also input formula for certain compounds
digits	mass or mass to charge ratio accuracy for pmd, default 2
accuracy	measured mass or mass to charge ratio in digits, default 4
rtcutoff	cutoff of the distances in retention time hierarchical clustering analysis, default 10
corcutoff	cutoff of the correlation coefficient, default 0.6
ppm	all the peaks within this mass accuracy as seed mass or formula

Value

a list with mzrt profile and reaction chain dataframe

Examples

```
data(spmeinvivo)
# check metabolites of C18H39N0
pmd <- getchain(spmeinvivo,diff = c(2.02,14.02,15.99),mass = 286.3101)</pre>
```

getcluster

Get Pseudo-Spectrum as peaks cluster based on pmd analysis.

Description

Get Pseudo-Spectrum as peaks cluster based on pmd analysis.

Usage

```
getcluster(list, corcutoff = NULL, accuracy = 4)
```

getcorcluster 5

Arguments

list a list from getstd function

corcutoff cutoff of the correlation coefficient, default NULL

accuracy measured mass or mass to charge ratio in digits, default 4

Value

list with Pseudo-Spectrum index

See Also

```
getpaired,getstd,plotstd
```

Examples

```
data(spmeinvivo)
re <- getpaired(spmeinvivo)
re <- getstd(re)
cluster <- getcluster(re)</pre>
```

getcorcluster

Get Pseudo-Spectrum as peaks cluster based on correlation analysis.

Description

Get Pseudo-Spectrum as peaks cluster based on correlation analysis.

Usage

```
getcorcluster(list, corcutoff = 0.9, rtcutoff = 10, accuracy = 4)
```

Arguments

list a list with peaks intensity

corcutoff cutoff of the correlation coefficient, default 0.9 rtcutoff cutoff of the distances in cluster, default 10

accuracy measured mass or mass to charge ratio in digits, default 4

Value

list with Pseudo-Spectrum index

Examples

```
data(spmeinvivo)
cluster <- getcorcluster(spmeinvivo)</pre>
```

6 getmspmd

getms2pmd

read in MSP file as list for ms/ms annotation

Description

read in MSP file as list for ms/ms annotation

Usage

```
getms2pmd(file, digits = 2, icf = 10)
```

Arguments

file the path to your MSP file

digits mass or mass to charge ratio accuracy for pmd, default 2

icf intensity cutoff, default 10 percentage

Value

list a list with MSP information for MS/MS annotation

getmspmd

read in MSP file as list for EI-MS annotation

Description

read in MSP file as list for EI-MS annotation

Usage

```
getmspmd(file, digits = 2, icf = 10)
```

Arguments

file the path to your MSP file

digits mass or mass to charge ratio accuracy for pmd, default 0

icf intensity cutoff, default 10 percentage

Value

list a list with MSP information for EI-MS annotation

getpaired 7

getpaired	Filter ions/peaks based on retention time hierarchical clustering, paired mass distances(PMD) and PMD frequency analysis.
	Function with the state of the

Description

Filter ions/peaks based on retention time hierarchical clustering, paired mass distances(PMD) and PMD frequency analysis.

Usage

```
getpaired(
  list,
  rtcutoff = 10,
  ng = NULL,
  digits = 2,
  accuracy = 4,
  mdrange = NULL
)
```

Arguments

list	a list with mzrt profile
rtcutoff	cutoff of the distances in retention time hierarchical clustering analysis, default 10
ng	cutoff of global PMD's retention time group numbers, If $ng = NULL$, 20 percent of RT cluster will be used as ng , default NULL.
digits	mass or mass to charge ratio accuracy for pmd, default 2
accuracy	measured mass or mass to charge ratio in digits, default 4
mdrange	mass defect range to ignore. Default NULL and $c(0.25,0.9)$ to retain the possible reaction related paired mass

Value

list with tentative isotope, multi-chargers, adducts, and neutral loss peaks' index, retention time clusters.

See Also

```
getstd,getsda,plotpaired
```

Examples

```
data(spmeinvivo)
pmd <- getpaired(spmeinvivo)</pre>
```

8 getpmddf

getpmd Get pmd for specific reaction

Description

Get pmd for specific reaction

Usage

```
getpmd(list, pmd, rtcutoff = 10, corcutoff = NULL, digits = 2, accuracy = 4)
```

Arguments

list a list with mzrt profile

pmd a specific paired mass distance or a vector of pmds

rtcutoff cutoff of the distances in retention time hierarchical clustering analysis, default

10

corcutoff cutoff of the correlation coefficient, default NULL

digits mass or mass to charge ratio accuracy for pmd, default 2 accuracy measured mass or mass to charge ratio in digits, default 4

Value

list with paired peaks for specific pmd or pmds.

See Also

```
getpaired,getstd,getsda,getrda
```

Examples

```
data(spmeinvivo)
pmd <- getpmd(spmeinvivo,pmd=15.99)</pre>
```

getpmddf

Get pmd details for specific reaction after the removal of isotopouge.

Description

Get pmd details for specific reaction after the removal of isotopouge.

Usage

```
getpmddf(mz, group = NULL, pmd = NULL, digits = 2, mdrange = c(0.25, 0.9))
```

getposneg 9

Arguments

mz a vector of mass to charge ratio.

group mass to charge ratio group from either retention time or mass spectrometry

imaging segmentation.

pmd a specific paired mass distance or a vector of pmds

digits mass or mass to charge ratio accuracy for pmd, default 2.

mdrange mass defect range to ignore. Default c(0.25,0.9) to retain the possible reaction

related paired mass.

Value

dataframe with paired peaks for specific pmd or pmds. When group is provided, a column named net will be generated to show if certain pmd will be local(within the same group) or global(across the groups)

See Also

```
getpaired,getstd,getsda,getrda
```

Examples

```
data(spmeinvivo)
pmddf <- getpmddf(spmeinvivo$mz,pmd=15.99)</pre>
```

getposneg

Link pos mode peak list with neg mode peak list by pmd.

Description

Link pos mode peak list with neg mode peak list by pmd.

Usage

```
getposneg(pos, neg, pmd = 2.02, digits = 2)
```

Arguments

pos a list with mzrt profile collected from positive mode.

neg a list with mzrt profile collected from negative mode.

pmd numeric or numeric vector

digits mass or mass to charge ratio accuracy for pmd, default 2

Value

dataframe with filtered positive and negative peak list

10 getrda

analysis for mass only.
ı

Description

Perform structure/reaction directed analysis for mass only.

Usage

```
getrda(
   mz,
   pmd = NULL,
   freqcutoff = 10,
   digits = 3,
   top = 20,
   formula = NULL,
   mdrange = c(0.25, 0.9),
   verbose = FALSE
)
```

Arguments

mz	numeric vector for independent mass or mass to charge ratio. Mass to charge ratio from GlobalStd algorithm is suggested. Isomers would be excluded automated
pmd	a specific paired mass distance or a vector of pmds, default NULL
freqcutoff	pmd frequency cutoff for structures or reactions, default 10
digits	mass or mass to charge ratio accuracy for pmd, default 3
top	top n pmd frequency cutoff when the freqcutoff is too small for large data set
formula	vector for formula when you don't have mass or mass to charge ratio data
mdrange	mass defect range to ignore. Default $c(0.25,0.9)$ to retain the possible reaction related paired mass
verbose	logic, if TURE, return will be llist with paired mass distances table. Default FALSE.

Value

logical matrix with row as the same order of mz or formula and column as high frequency pmd group when verbose is FALSE

See Also

getsda

getreact 11

Examples

```
data(spmeinvivo)
pmd <- getpaired(spmeinvivo)
std <- getstd(pmd)
sda <- getrda(spmeinvivo$mz[std$stdmassindex])
sda <- getrda(spmeinvivo$mz, pmd = c(2.016,15.995,18.011,14.016))</pre>
```

getreact

Get quantitative paired peaks list for specific reaction/pmd

Description

Get quantitative paired peaks list for specific reaction/pmd

Usage

```
getreact(
  list,
  pmd,
  rtcutoff = 10,
  digits = 2,
  accuracy = 4,
  cvcutoff = 30,
  outlier = FALSE,
  method = "static",
  ...
)
```

Arguments

list a list with mzrt profile and data pmd a specific paired mass distances cutoff of the distances in retention time hierarchical clustering analysis, default rtcutoff 10 digits mass or mass to charge ratio accuracy for pmd, default 2 measured mass or mass to charge ratio in digits, default 4 accuracy cvcutoff ratio or intensity cv cutoff for quantitative paired peaks, default 30 outlier logical, if true, outlier of ratio will be removed, default False. quantification method can be 'static' or 'dynamic'. See details. method other parameters for getpmd

12 getsda

Details

PMD based reaction quantification methods have two options: 'static' will only consider the stable mass pairs across samples and such reactions will be limited by the enzyme or other factors than substrates. 'dynamic' will consider the unstable paired masses by normalization the relatively unstable peak with stable peak between paired masses and such reactions will be limited by one or both peaks in the paired masses.

Value

list with quantitative paired peaks.

See Also

getpaired,getstd,getsda,getrda,getpmd,

Examples

```
data(spmeinvivo)
pmd <- getreact(spmeinvivo,pmd=15.99)</pre>
```

getsda

Perform structure/reaction directed analysis for peaks list.

Description

Perform structure/reaction directed analysis for peaks list.

Usage

```
getsda(
   list,
   rtcutoff = 10,
   corcutoff = NULL,
   digits = 2,
   accuracy = 4,
   freqcutoff = NULL)
```

Arguments

list a list with mzrt profile

rtcutoff cutoff of the distances in retention time hierarchical clustering analysis, default 10

corcutoff cutoff of the correlation coefficient, default NULL

digits mass or mass to charge ratio accuracy for pmd, default 2

accuracy measured mass or mass to charge ratio in digits, default 4

freqcutoff pmd frequency cutoff for structures or reactions, default NULL. This cutoff will

be found by PMD network analysis when it is NULL.

getstd 13

Value

list with tentative isotope, adducts, and neutral loss peaks' index, retention time clusters.

See Also

```
getpaired,getstd,plotpaired
```

Examples

```
data(spmeinvivo)
pmd <- getpaired(spmeinvivo)
std <- getstd(pmd)
sda <- getsda(std)</pre>
```

getstd

Find the independent ions for each retention time hierarchical clustering based on PMD relationship within each retention time cluster and isotope and return the index of the std data for each retention time cluster.

Description

Find the independent ions for each retention time hierarchical clustering based on PMD relationship within each retention time cluster and isotope and return the index of the std data for each retention time cluster.

Usage

```
getstd(list, corcutoff = NULL, digits = 2, accuracy = 4)
```

Arguments

list a list from getpaired function

corcutoff cutoff of the correlation coefficient, default NULL

digits mass or mass to charge ratio accuracy for pmd, default 2 accuracy measured mass or mass to charge ratio in digits, default 4

Value

list with std mass index

See Also

```
getpaired,getsda,plotstd
```

14 globalstd

Examples

```
data(spmeinvivo)
pmd <- getpaired(spmeinvivo)
std <- getstd(pmd)</pre>
```

gettarget

Get multiple injections index for selected retention time

Description

Get multiple injections index for selected retention time

Usage

```
gettarget(rt, drt = 10, n = 6)
```

Arguments

rt retention time vector for peaks in seconds

drt retention time drift for targeted analysis in seconds, default 10.

n max ions numbers within retention time drift windows

Value

index for each injection

Examples

```
data(spmeinvivo)
pmd <- getpaired(spmeinvivo)
std <- getstd(pmd)
index <- gettarget(std$rt[std$stdmassindex])
table(index)</pre>
```

globalstd

GlobalStd algorithm with structure/reaction directed analysis

Description

GlobalStd algorithm with structure/reaction directed analysis

globalstd 15

Usage

```
globalstd(
  list,
  rtcutoff = 10,
  ng = NULL,
  corcutoff = NULL,
  digits = 2,
  accuracy = 4,
  freqcutoff = NULL,
  mdrange = NULL,
  sda = FALSE
)
```

Arguments

list	a peaks list with mass to charge, retention time and intensity data
rtcutoff	cutoff of the distances in cluster, default 10
ng	cutoff of global PMD's retention time group numbers, If $ng = NULL$, 20 percent of RT cluster will be used as ng , default $NULL$.
corcutoff	cutoff of the correlation coefficient, default NULL
digits	mass or mass to charge ratio accuracy for pmd, default 2
accuracy	measured mass or mass to charge ratio in digits, default 4
freqcutoff	pmd frequency cutoff for structures or reactions, default NULL. This cutoff will be found by PMD network analysis when it is NULL.
mdrange	mass defect range to ignore. Default NULL and $c(0.25, 0.9)$ to retain the possible reaction related paired mass
sda	logical, option to perform structure/reaction directed analysis, default FALSE.

Value

list with GlobalStd algorithm processed data.

See Also

 ${\tt getpaired,getstd,getsda,plotstd,plotstdsda,plotstdrt}$

Examples

```
data(spmeinvivo)
re <- globalstd(spmeinvivo)</pre>
```

16 keggrall

hmdb	A dataframe containing HMDB with unique accurate mass pmd with three digits frequency larger than 1 and accuracy percentage larger than 0.9.

Description

A dataframe containing HMDB with unique accurate mass pmd with three digits frequency larger than 1 and accuracy percentage larger than 0.9.

Usage

data(hmdb)

Format

A dataframe with atoms numbers of C, H, O, N, P, S

percentage accuracy of atom numbers predictionpmd2 pmd with two digitspmd pmd with three digits

keggrall

A dataframe containing reaction related accurate mass pmd and related reaction formula with KEGG ID

Description

A dataframe containing reaction related accurate mass pmd and related reaction formula with KEGG ID

Usage

data(keggrall)

Format

A dataframe with KEGG reaction, their realted pmd and atoms numbers of C, H, O, N, P, S

ID KEGG reaction ID

pmd pmd with three digits

MaConDa 17

MaConDa

mass spectrometry contaminants database for PMD check

Description

mass spectrometry contaminants database for PMD check

Usage

data(sda)

Format

A data frame with 308 rows and 5 variables:

id MaConDa ID

name contaminants

formula contaminants fomula

exact_mass exact mass of contaminants

type_of_contaminant type of contaminant

Source

https://academic.oup.com/bioinformatics/article/28/21/2856/236679

omics

A dataframe containing multiple reaction database ID and their related accurate mass pmd and related reactions

Description

A dataframe containing multiple reaction database ID and their related accurate mass pmd and related reactions

Usage

data(omics)

pcasf

Format

A dataframe with reaction and their realted pmd

KEGG KEGG reaction ID **RHEA ID** RHEA ID

DIRECTION reaction direction

MASTER_ID master reaction RHEA ID

ec ec reaction ID

ecocyc ecocyc reaction ID
macie macie reaction ID
metacyc metacyc reaction ID
reactome reactome reaction ID

compounds reaction related compounds

pmd pmd with two digitspmd2 pmd with three digits

pcasf

Compare matrices using PCA similarity factor

Description

Compare matrices using PCA similarity factor

Usage

```
pcasf(x, y, dim = NULL)
```

Arguments

x Matrix with sample in column and features in row

y Matrix is compared to x.

dim number of retained dimensions in the comparison. Defaults to all.

Value

Ratio of projected variance to total variance

Author(s)

Edgar Zanella Alvarenga

References

Singhal, A. and Seborg, D. E. (2005), Clustering multivariate time-series data. J. Chemometrics, 19: 427-438. doi: 10.1002/cem.945

ploten 19

Examples

```
c1 <- matrix(rnorm(16),nrow=4)
c2 <- matrix(rnorm(16),nrow=4)
pcasf(c1, c2)</pre>
```

plotcn

plot PMD KEGG network for certain compounds and output network average distance and degree

Description

plot PMD KEGG network for certain compounds and output network average distance and degree

Usage

```
plotcn(formula, name, pmd)
```

Arguments

formula Chemical formula name Compound name

pmd specific paired mass distances

Examples

```
plotcn('C6H12O6','Glucose',c(2.016,14.016,15.995))
```

plotpaired

Plot the mass pairs and high frequency mass distances

Description

Plot the mass pairs and high frequency mass distances

Usage

```
plotpaired(list, index = NULL, ...)
```

Arguments

list a list from getpaired function

index index for PMD value

... other parameters for plot function

20 plotrtg

See Also

```
getpaired, globalstd
```

Examples

```
data(spmeinvivo)
pmd <- getpaired(spmeinvivo)
plotpaired(pmd)</pre>
```

plotrtg

Plot the retention time group

Description

Plot the retention time group

Usage

```
plotrtg(list, ...)
```

Arguments

```
1ist a list from getpaired function... other parameters for plot function
```

See Also

```
getpaired, globalstd
```

Examples

```
data(spmeinvivo)
pmd <- getpaired(spmeinvivo)
plotrtg(pmd)</pre>
```

plotsda 21

plotsda

Plot the specific structure directed analysis(SDA) groups

Description

Plot the specific structure directed analysis(SDA) groups

Usage

```
plotsda(list, ...)
```

Arguments

1 ist a list from getpmd function... other parameters for plot function

See Also

```
getstd, globalstd,plotstd,plotpaired,plotstdrt
```

Examples

```
data(spmeinvivo)
re <- getpmd(spmeinvivo,pmd=78.9)
plotsda(re)</pre>
```

plotstd

Plot the std mass from GlobalStd algorithm

Description

Plot the std mass from GlobalStd algorithm

Usage

```
plotstd(list)
```

Arguments

list a list from getstd function

See Also

```
getstd, globalstd
```

22 plotstdrt

Examples

```
data(spmeinvivo)
pmd <- getpaired(spmeinvivo)
std <- getstd(pmd)
plotstd(std)</pre>
```

plotstdrt

Plot the std mass from GlobalStd algorithm in certain retention time groups

Description

Plot the std mass from GlobalStd algorithm in certain retention time groups

Usage

```
plotstdrt(list, rtcluster, ...)
```

Arguments

```
list a list from getstd function

rtcluster retention time group index

... other parameters for plot function
```

See Also

```
getstd, globalstd,plotstd,plotpaired,plotstdsda
```

Examples

```
data(spmeinvivo)
pmd <- getpaired(spmeinvivo)
std <- getstd(pmd)
plotstdrt(std,rtcluster = 6)</pre>
```

plotstdsda 23

plotstdsda Plot the std mass from GlobalStd algorithm in structure directed ana ysis(SDA) groups	ıl-
--	-----

Description

Plot the std mass from GlobalStd algorithm in structure directed analysis(SDA) groups

Usage

```
plotstdsda(list, index = NULL, ...)
```

Arguments

list a list from getsda function index index for PMD value

... other parameters for plot function

See Also

```
getstd, globalstd,plotstd,plotpaired,plotstdrt
```

Examples

```
data(spmeinvivo)
re <- globalstd(spmeinvivo, sda=TRUE)
plotstdsda(re)</pre>
```

pmdanno

Perform MS/MS pmd annotation for mgf file

Description

Perform MS/MS pmd annotation for mgf file

Usage

```
pmdanno(file, db = NULL, ppm = 10, prems = 1.1, pmdc = 0.6, scutoff = 0.1)
```

24 runPMDnet

Arguments

file mgf file generated from MS/MS data

db database could be list object from 'getms2pmd'

ppm mass accuracy, default 10

prems precursor mass range, default 1.1 to include M+H or M-H

pmdc pmd length percentage cutoff for annotation. 0.6(default) means 60 percentage

of the pmds in your sample could be found in certain compound pmd database

scutoff relative intensity cutoff for input spectra for pmd analysis, default 0.1

Value

list with MSMS annotation results

runPMD

Shiny application for PMD analysis

Description

Shiny application for PMD analysis

Usage

runPMD()

runPMDnet

Shiny application for PMD network analysis

Description

Shiny application for PMD network analysis

Usage

runPMDnet()

sda 25

sda	A dataset containing common Paired mass distances of substructure, ions replacements, and reaction
	ions replacements, and reaction

Description

A dataset containing common Paired mass distances of substructure, ions replacements, and reaction

Usage

data(sda)

Format

A data frame with 94 rows and 4 variables:

PMD Paired mass distances

origin potential sources

Ref. references

mode positive, negative or both mode to find corresponding PMDs

spmeinvivo A peaks list dataset containing 9 samples from 3 fish with triplicates samples for each fish from LC-MS.

Description

A peaks list dataset containing 9 samples from 3 fish with triplicates samples for each fish from LC-MS.

Usage

```
data(spmeinvivo)
```

Format

A list with 4 variables from 1459 LC-MS peaks:

mz mass to charge ratios

rt retention time

data intensity matrix

group group information

Index

```
* datasets
                                                    pmdanno, 23
    hmdb, 16
                                                    runPMD, 24
    keggrall, 16
                                                    runPMDnet, 24
    MaConDa, 17
    omics, 17
                                                    sda, 25
    sda, 25
                                                    spmeinvivo, 25
    spmeinvivo, 25
getcda, 3
getchain, 3
getcluster, 4
getcorcluster, 5
getms2pmd, 6
getmspmd, 6
getpaired, 5, 7, 8, 9, 12, 13, 15, 20
getpmd, 8, 12
getpmddf, 8
getposneg, 9
getrda, 3, 8, 9, 10, 12
getreact, 11
getsda, 3, 7–10, 12, 12, 13, 15
getstd, 5, 7-9, 12, 13, 13, 15, 21-23
gettarget, 14
globalstd, 14, 20–23
hmdb, 16
keggrall, 16
MaConDa, 17
\verb"omics", 17"
pcasf, 18
plotcn, 19
plotpaired, 7, 13, 19, 21-23
plotrtg, 20
plotsda, 21
plotstd, 5, 13, 15, 21, 21, 22, 23
plotstdrt, 15, 21, 22, 23
plotstdsda, 15, 22, 23
```